top of page
PC183836
P1074672
P1074690
P1074654
P1135125
P1135108
IMG_5742
IMG_4079a
DSC_0262
DSC_0276
IMG_5547
IMG_4303
CSC_0074
IMG_9454 copy
DSC_0452
TEDA8220
IMG_5806a
IMG_4277
DSC_0313
IMG_0002

DATASETS AVAILABLE

Cambridge Bay, Canada: https://data.npolar.no/dataset/a944d448-3c2b-4e32-8dae-ce52a29e7220

BREATHE IN THE NEWS

RECENT PUBLICATIONS

Osanen et al. (2025), Estimating Sea Ice Algal Biomass in Svalbard Fjords Using Underwater Hyperspectral Imaging: Integrating Laboratory and Field Calibration Approaches. JGR: Biogeosciences. doi: 10.1029/2025JG008784.

Sadler et al. (2025), Genomic diversity and adaptation in Arctic marine bacteria. Mbio. doi: 10.1128/mbio.01555-25.

Stroeve et al. (2024), Mapping Potential Timing of Ice Algal Blooms From Satellite. GRL. doi: 10.1029/2023GL106486

Forgereau et al. (2023), Photophysiological responses of bottom sea-ice algae to fjord dynamics and rapid freshening. Frontiers in Marine Sciences. doi: 10.3389/fmars.2023.1221639.

Willis et al. (2023). Polar Oceans and sea ice in a changing climate. Elementa Science of the Anthropocene. doi: 10.1525/elementa.2023.00056

Blockley et al. (2023). Impacts of climate change on Arctic sea ice. MCCIP Science Review. doi: 10.14465/2023.reu12.ice

Landy, J.C. et al. (2022), A year-round satellite sea-ice thickness record from CryoSat-2. Nature, 609, 517-522. doi: 10.1038/s41586-022-05058-5

Duarte, P, Assmy, P, Campbell, K, and A Sundfjord (2022), The importance of turbulent ocean-sea ice nutrient exchanges for simulation of ice algal biomass and production with CICE6.1 and Icepack 1.2. EGU Geoscientific Model Development. doi: 10.5194/gmd-2021-58.

Campbell, K, et al. (2022), Net heterotrophy in High Arctic first-year and multi-year spring sea ice'. Elementa Science of the Anthropocene, 10(1), 00040. doi: 10.1525/elementa.2021.00040.

 

Screen Shot 2023-03-12 at 12.33.11 AM.png
Screenshot 2025-08-28 at 2.51.25 PM.png
bottom of page